instacart

MARKETING ANALYSIS

Tools: Jupyter Notebook + Libraries

Language: Python

This Photo by Unknown Autht

OVERVIEW:
Instacart is an online grocery store that operates through a mobile application in the U.S and
Canada. The stakeholders are mostly interested in the variety of customers in their database along
with their purchasing behaviors to implement a targeted marketing strategy.

OBJECTIVE:
The purpose of this student project was to dive into analytics with Python, practice the
preparation of data analysis, and conduct the most fundamental data engineering tasks using
large amount of data.

DATASETS:

The datasets contain open-source data from 2017 made available online by Instacart.
The consumer data and the prices of the products were both fabricated for learning
purposes.

This study project was part of my data analytics course with CareerFoundry.

http://www.progressive-charlestown.com/2015/09/get-happy.html
https://creativecommons.org/licenses/by-sa/3.0/

* instacart

SETTING UP THE CODING ENVIROMENT

To start with this project, | set up the Python environment by installing Anaconda, a
Python’s helper program, wrote and ran scripts in Jupyter notebook.

For the analysis, Pandas and NumPy libraries were used and, later on, also Matplotlib,
Seaborn, and SciPy libraries to plot and visualize the results.

UNDERSTANDING THE DATA
The four data sets contain observations about users, orders and products ordered.

Out of four sets analyzed, one was very specific: it contained over 32 million observations,
an amount of data impossible to view at a glance without the use of Python and
descriptive statistics to explore.

df_ORDS_large.info() [df_cusT.describe()

<class 'pandas.core.frame.DataFrame’ > user_id age n_dependants income
RangeIndex: 32648628 entries, 6 to 32648897
Data columns {total 9 columns):

count 206209.000000 206209.000000 206209.000000 206209.000000

+ Column Dtype mean 103105.000000 49.501646 1499823 04532.852548
cem mmmeee s std 59527.555167 18.480962 1118433 42473.786988
@ order_id intsa min 1000000 13.000000 0.000000 25903.000000
1 user_id inted

5 order number inted 25% 51553.000000 33.000000 0.000000 59874.000000
3 order_day_of_the_week ints4 50% 103105.000000 49.000000 1.000000 93547.000000
4 order_hour_of_day intsa 75% 154657.000000 66.000000 3.000000 124244.000000
5 days_since_prior_order floated

6 product id floated max 206209.000000 £1.000000 3.000000 593901.000000
7 add_to _cart order floatsd

& reorderad float6d

dtypes: floatsd(4), inte4d(s)
memory usage: 2.2 GB

* instacart

WRANGLING THE DATA

While running a consistency check on data, df_ORDS.isnull().sum()

206,209 missing values in the column order_id 3

‘days_since_prior_order’ were discovered. user_id 8

Logically, those missing values indicated all order_number e

orders that were placed for the first time and | order_day_of_the_week @
order_hour_of_day 2]

decided not to replace them with any other days since prior order | DEREEE

value. dtype: inte4

df_PRODS['product_name'].value_counts(dropna = False) In the set with products’ 16 observations
Nt 15 with missing product names were found.
Adore Forever Body Wash 2

Black House Coffee Roasty Stout Beer 2 There was no reason to keep them for the
Ranger IPA 2 .

Fiber 4g Gumy Dietary supplement 2 analysis as no shopper would buy a

product without knowing what it is, so |

Charcoal Briquettes Mesquite 1

Dentastix® Mini D Ch 1 i 1 1

Crgor Free Gum wier Xyiiiol spearmint 1 dropped all the rows w]th missing product
Original Thin Sausage Pizza ! names. The exploration also revealed
Vinegar & Sea Salt Potato Chips 1 .

Name: product_name, Length: 49673, dtype: int64 double entries for the same product.

df_PRODS_clean.describe()

The summary statistics helped to discover strange values. | found :

the maximal product price of $99,999 - what an unusual price for a s
grocery store! In a business setup, this would have to be | ma s
communicated to stakeholders. -

min 1.000000
25% 4.100000
50% 7.100000
75% 11.100000
max 9999%.000000

15t MERGER

After dropping redundant columns and renaming others to give them more intuitive
names, the two sets were ready to be merged. The joining operation was based on the
‘order_id’ column common for all sets:

merging the two data sets on column "order id"
the order set has 3.421.882 rows
the prior set has 32.434.489 rows

df_ORDS_large = df_ORDS.merge(df ORDS_PRODS prior, on = 'order_id', how = 'outer', indicator = True)

This merging procedure allowed to combine products with orders and users, and created
a first foundation for analysis of shoppers’ behaviors, as expected by project’s
stakeholders.

MORE MISSING VALUES

Additional consistency check of the merged data revealed 11 missing values in the
orders’ columns:

df_NaN_or'der_id\

order_id user_id order_number order day_of the week order hour of day days_since prior order product id add_to_cart_order reordered product name

Protein
NaN NaN NaN NaN NaN NaN 3630.0 NaN NaN Granola Apple
Crisp

\Wasabi
Cheddar
Spreadable
Cheese

NaN NaN MNaN Nan NaN NaN 37180 NaN NaM

Unpeeled
NaN NaN NaN NaN NaN NaN 7045.0 NaN NaM Apricot Halves
in Heavy Syrup

Chocolate Go

NaN NaN NaN NaN NaM NaN 253830 NaN NaN Bites

Upon investigation of the missing data, | came to a conclusion that those 11 products
have not been ordered yet by any of the users, as they were never assigned to any order
number. Quite an important insight for the products department of Instacart.

* instacart

* instacart

2nd MERGER

The combination of all four sets turned out to be challenging. With many millions of
observations, one small mistake in coding, which | previously overlooked, created
memory errors causing my computer to freeze. After learning this a hard way, | changed
my approach and performed the mergers once more to make sure all sets are clean from
any mistakes.

Keeping this lesson in mind, | additionally resized the new set by creating a sample
containing 10% of the merged data with the use of a random number generator:

Since I had so many problems with the dataset size, I am creating a sample containing 18% of records.

dev = np.random.rand(len(df_COP_large)) <= 8.9

small_df COP = df_COP_large[~dev]

This solution allowed me to apply transformation procedures like deriving new columns
using if-statements, loc and for-loops functions, as well as grouping and aggregating
methods without interruptions caused by memory errors. With this clean slate, | was
able to enrich my data set with new variables to derive insights about Instacart
customers:

Use "if-statment for-loops" and create and empty List Fpchiecaptiicpirediency

df_COP['region’].value_counts(dropna = False)

result = []
south 1021858
for state in df_COP['state’]: ﬁ;:est ggigé:
if (state == "Maine') or (state == "New Hampshire') or Northeast 576574
result.append("Northeast') Name: region, dtype: inte4
elif (state == 'Deleware’) or (state == "Maryland') or
result.append("South') df_reg = df_coP['region’].value_counts().plot.pie()
elif (state == 'Wisconsin') or (state == "Michigan') o
result.append(Midwest")
else:
result.append("West")
« I et

region

Create the new column "region”

df_COP['region’] = result

Midwest

* instacart

CUSTOMER BEHAVIORS AND THEIR PROFILES

Based on the project brief, the Instacart stakeholders are interested in the variety of
customers in their database along with their purchasing behaviors.

At this point, my data set was perfectly clean, so | was ready to explore behaviors of
Instacart users, build their profiles, check for relationships, and visualize the results.

| used histograms, scatterplots, bar and line charts to achieve it and it was the most
rewarding part of the entire analysis, when the carefully curated numbers turned into

pictures.
00000 soaoo There is no direct
w0000 sooao 00600 relationship
o000 200000 00001 ® _ oge o 800 385 02 between age and
300000 150000 ganunno L LR spending power of a
B : user, but age group
200000
o e 20-40 has less
100000 100000 .
0000 | | I spending power
%0 10 60 20 50 30 40 0 l L - I ' y ° than the users 40+.
Orders by Days of the Week o 5 pl 13 20
Shoppers are most active The peak of orders is
on Sundays and Mondays. between 9 am - 5 pm.
L —— . . .
ﬁ‘:ﬁi‘ﬁ Produce is in the highest
Perconal s Jum demand, followed by Dairy &
ngg [r— Eggs, Snacks, Beverages, and
Mot asﬁjgr!ed Jm Frozen.
n 155N 1 Big families with 2+
Meat, Seaf == .
= International - dependents are the major
-
£ ol e B shoppers throughout all
g Dry Gouds, Pasta == departments.
e Dairy, Eggs
Cann 5 -
Bulk 1
Breakfast e HE Eig family
T ——
Bevgﬁgeﬁ | — = No dependents
Babies == s Small family
Alcohal

T T T T
0 200000 400000 B00000 BO0000

* instacart

READY FOR RECOMMENDATIONS

The discovered trends and insights allowed me to address the stakeholders’
considerations for applying targeted marketing strategy and suggest a few promotional
activities, for example:

Shoppers which place 5 and more orders
days_since_prior_order are the majority as shown in the pie
chart. Logically, they also shop more
often as their average break between

mean

ity
E)

E' order_acivity orders is around 10 days (shown in the

E LT DT table to the left). A good incentive
Low 19.280485 campaign towards the low active users

could make them place more orders.

Users across all regions are order_number 10 .M_ o oo

characterized by similar spending mean et s:p:r::;r

levels: almost all pay less than spending_flag 08 1

$10 on average for their products : =

as they are grouped in the ‘Low e 9309759 06 1

spender’ category. They also Low spender 17.454234

place more orders on average 041

than ‘High spenders’. It would be

beneficial to promote activities 021

that would make ‘High spenders’

place more orders as they buy 00 et Northeast ot

more expensive products on Region

average.

) instacart

FINISHING UP

Finally, | documented the entire analysis process in the form of Excel Reporting that
contains the population flow, describes wrangling and deriving operations, shows
visualizations of results along with recommendations for the new marketing strategies.

s Population Flow:

*Original dataset ORDERs. | [Ty
ORDERS | Rt PRODUCTS | it
_PRIOR
e . .
== ORDERS | grs i oot
fr—— . rows:
Gis fro s
+om
. * Tomal

* Original cataset
« Toral rows: 206.208
CUSTOMERS | Iy
issi
]

CUSTOMERS

* Missing values: 16 in the
"prod calumn

after consistency
check

* Merged dataset
« Total rows: 32.642.461

* Total rows: 32.640.698
~ * Total columns: 9

ORDERS_ |8
PRODUCTS

after consistency Y
chedk first orders

* Total rows: 32641461

* Total columns: 13

All project’s files are stored in my GitHub repository.

https://github.com/walerysan/CF_PYTHON_Instacart

* instacart

CONCLUSIONS

» The large sets with millions of observations required a certain level of abstract
thinking about the numbers to recognize what they indicate and to interpret them in
the context of the project’s scope.

» The merger operations of large data sets turned out to cause memory problems on my
computer. This taught me to execute procedures with respect to available hardware
resources. Additionally, | learned to look for solutions and to try different approach
even if this meant starting all over again.

» While conducting data analysis through steps of data wrangling procedures and the
use of Python, | found myself loosing sight of the analysis’ objective. By asking myself
“Why | did this particular operation?”, | managed to refocus and succeeded in
uncovering insights about customers’ behaviors.

SKILLS LEARNED

Q Python O Data wrangling
O Jupyter Notebook U Data merging

U Reporting in Excel Q Deriving variables
Q Population flow O Grouping data

O Aggregating data

